Monday, June 26, 2017

How Walking Benefits the Brain

Until recently, the blood supply to the brain (cerebral blood flow or CBF) was thought to be involuntarily regulated by the body and relatively unaffected by changes in the blood pressure caused by exercise or exertion. The NMHU research team and others previously found that the foot’s impact during running (4–5 G-forces) caused significant impact-related retrograde (backward-flowing) waves through the arteries that sync with the heart rate and stride rate to dynamically regulate blood circulation to the brain.

In the current study, the research team used non-invasive ultrasound to measure internal carotid artery blood velocity waves and arterial diameters to calculate hemispheric CBF to both sides of the brain of 12 healthy young adults during standing upright rest and steady walking (1 meter/second). The researchers found that though there is lighter foot impact associated with walking compared with running, walking still produces larger pressure waves in the body that significantly increase blood flow to the brain. While the effects of walking on CBF were less dramatic than those caused by running, they were greater than the effects seen during cycling, which involves no foot impact at all.

“New data now strongly suggest that brain blood flow is very dynamic and depends directly on cyclic aortic pressures that interact with retrograde pressure pulses from foot impacts,” the researchers wrote. “There is a continuum of hemodynamic effects on human brain blood flow within pedaling, walking and running. Speculatively, these activities may optimize brain perfusion, function, and overall sense of wellbeing during exercise.”